skip to main content


Search for: All records

Creators/Authors contains: "Sonti, Nancy F."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Addressing the challenges of sustainable and equitable city management in the 21st century requires innovative solutions and integration from a range of dedicated actors. In order to form and fortify partnerships of multi-sectoral collaboration, expand effective governance, and build collective resiliency it is important to understand the network of existing stewardship organizations. The term ‘stewardship’ encompasses a spectrum of local agents dedicated to the evolving process of community care and restoration. Groups involved in stewardship across Baltimore are catalysts of change through a variety of conservation, management, monitoring, transformation, education, and advocacy activities for the local environment – many with common goals of joint resource management, distributive justice, and community power sharing. The “environment” here is intentionally broadly defined as land, air, water, energy and more. The Stewardship Mapping and Assessment Project (STEW-MAP) is a method of data collection and visualization that tracks the characteristics of organizations and their financial and informational flows across sectors and geographic boundaries. The survey includes questions about three facets of environmental stewardship groups: 1) organizational characteristics, 2) collaboration networks, and 3) stewardship “turfs” where each organization works. The data have been analyzed alongside landcover and demographic data and used in multi-city studies incorporating similar datasets across major urban areas of the U.S. Additional information about the growing network of cities conducting stewmap can be found here: https://www.nrs.fs.usda.gov/STEW-MAP/ Romolini, Michele; Grove, J. Morgan; Locke, Dexter H. 2013. Assessing and comparing relationships between urban environmental stewardship networks and land cover in Baltimore and Seattle. Landscape and Urban Planning. 120: 190-207. https://www.fs.usda.gov/research/treesearch/44985 Johnson, M., D. H. Locke, E. Svendsen, L. Campbell, L. M. Westphal, M. Romolini, and J. Grove. 2019. Context matters: influence of organizational, environmental, and social factors on civic environmental stewardship group intensity. Ecology and Society 24(4): 1. https://doi.org/10.5751/ES-10924-240401 Ponte, S. 2023. Social-ecological processes and dynamics of urban forests as green stormwater infrastructure in Maryland, USA. Doctoral dissertation, University of Maryland, College Park, MD. 
    more » « less
  2. null (Ed.)
  3. Urban grasslands cover large land areas in human-dominated landscapes, but little is known about how these landscapes cycle carbon (C). In this study, we examine turfgrass biomass and productivity at thirty-three urban grassland sites within the Gwynns Fall watershed (Baltimore, MD). These sites are characteristic of residential conditions in the region and were selected to provide contrasts in urban ecosystem structure (density of coarse vegetation and built structures) as well as historical (pre-development) land use. Aboveground net primary productivity (ANPP) was measured as the sum of clipping production plus stubble, thatch, and moss production. This work provides context for understanding the impact of urban expansion on regional ecosystem C dynamics and identifies specific needs related to standardized methods for measuring turfgrass ANPP in urban grassland systems. 
    more » « less
  4. Abstract

    Humans promote and inhibit other species on the urban landscape, shaping biodiversity patterns. Institutional racism may underlie the distribution of urban species by creating disproportionate resources in space and time. Here, we examine whether present‐day street tree occupancy, diversity, and composition in Baltimore, MD, USA, neighborhoods reflect their 1937 classification into grades of loan risk—from most desirable (A = green) to least desirable (D = “redlined”)—using racially discriminatory criteria. We find that neighborhoods that were redlined have consistently lower street tree α‐diversity and are nine times less likely to have large (old) trees occupying a viable planting site. Simultaneously, redlined neighborhoods were locations of recent tree planting activities, with a high occupancy rate of small (young) trees. However, the community composition of these young trees exhibited lower species turnover and reordering across neighborhoods compared to those in higher grades, due to heavy reliance on a single tree species. Overall, while the negative effects of redlining remain detectable in present‐day street tree communities, there are clear signs of recent investment. A strategy of planting diverse tree cohorts paired with investments in site rehabilitation and maintenance may be necessary if cities wish to overcome ecological feedbacks associated with legacies of environmental injustice.

     
    more » « less
  5. Foliar chemistry values were obtained from two important native tree species (white oak (Quercus alba L.) and red maple (Acer rubrum L.)) across urban and reference forest sites of three major cities in the eastern United States during summer 2015 (New York, NY (NYC); Philadelphia, PA; and Baltimore, MD). Trees were selected from secondary growth oak-hickory forests found in New York, NY; Philadelphia, PA; and Baltimore, MD, as well as at reference forest sites outside each metropolitan area. In all three metropolitan areas, urban forest patches and references forest sites were selected based on the presence of red maple and white oak canopy dominant trees in patches of at least 1.5 hectares with slopes less than 25%, and well-drained soils of similar soil series within each metropolitan area. Within each city, several forest patches were selected to capture the variation in forest patch site conditions across an individual city. All reference sites were located in protected areas outside of the city and within intermix wildland-urban interface landscapes, in order to target similar contexts of surrounding land use and population density (Martinuzzi et al. 2015). Several reference sites were selected for each city, located within the same protected area considered representative of rural forests of the region. White oaks were at least 38.1 cm diameter at breast height (DBH), red maples were at least 25.4 cm DBH, and all trees were dominant or co-dominant canopy trees. The trees had no major trunk cavities and had crown vigor scores of 1 or 2 (less than 25% overall canopy damage; Pontius & Hallett 2014). From early July to early August 2015, sun leaves were collected from the periphery of the crown of each tree with either a shotgun or slingshot for subsequent analysis to determine differences in foliar chemistry across cities and urban vs. reference forest site types. The data were used to invstigate whether differences in native tree physiology occur between urban and reference forest patches, and whether those differences are site- and species-specific. A complete analysis of these data can be found in: Sonti, NF. 2019. Ecophysiological and social functions of urban forest patches. Ph.D. dissertation. University of Maryland, College Park, MD. 166 p. References: Martinuzzi S, Stewart SI, Helmers DP, Mockrin MH, Hammer RB, Radeloff VC. 2015. The 2010 wildland-urban interface of the conterminous United States. Research Map NRS-8. US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA. Pontius J, Hallett R. 2014. Comprehensive methods for earlier detection and monitoring of forest decline. Forest Science 60(6): 1156-1163. 
    more » « less
  6. Abstract

    Given the large and increasing amount of urban, suburban, and exurban land use on Earth, there is a need to accurately assess net primary productivity (NPP) of urban ecosystems. However, the heterogeneous and dynamic urban mosaic presents challenges to the measurement of NPP, creating landscapes that may appear more similar to a savanna than to the native landscape replaced. Studies of urban biomass have tended to focus on one type of vegetation (e.g., lawns or trees). Yet a focus on the ecology of the city should include the entire urban ecosystem rather than the separate investigation of its parts. Furthermore, few studies have attempted to measure urban aboveground NPP (ANPP) using field‐based methods. Most studies project growth rates from measurements of tree diameter to estimate annual ANPP or use remote sensing approaches. In addition, field‐based methods for measuring NPP do not address any special considerations for adapting such field methods to urban landscapes. Frequent planting and partial or complete removal of herbaceous and woody plants can make it difficult to accurately quantify increments and losses of plant biomass throughout an urban landscape. In this study, we review how ANPP of urban landscapes can be estimated based on field measurements, highlighting the challenges specific to urban areas. We then estimated ANPP of woody and herbaceous vegetation over a 15‐year period for Baltimore, MD, USA using a combination of plot‐based field data and published values from the literature. Baltimore's citywide ANPP was estimated to be 355.8 g m−2, a result that we then put into context through comparison with other North American Long‐Term Ecological Research (LTER) sites and mean annual precipitation. We found our estimate of Baltimore citywide ANPP to be only approximately half as much (or less) than ANPP at forested LTER sites of the eastern United States, and more comparable to grassland, oldfield, desert, or boreal forest ANPP. We also found that Baltimore had low productivity for its level of precipitation. We conclude with a discussion of the significance of accurate assessment of primary productivity of urban ecosystems and critical future research needs.

     
    more » « less